Day028 - 15. 3Sum
업데이트:
15. 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
내 풀이
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
nums.sort()
answer = []
for fix in range(len(nums) - 2):
if fix > 0 and nums[fix] == nums[fix - 1]: # 고정값 중복 방지
continue
l, r = fix + 1, len(nums) - 1
while l < r:
three_sum = nums[fix] + nums[l] + nums[r]
if three_sum == 0:
answer.append([nums[fix], nums[l], nums[r]])
# 중복된 값 건너뛰기
while l < r and nums[l] == nums[l + 1]:
l += 1
while l < r and nums[r] == nums[r - 1]:
r -= 1
l += 1
r -= 1
elif three_sum < 0:
l += 1
else:
r -= 1
return answer
# Time Complexity : \(O(N)\)
댓글남기기